A Limit Study of State-Space-Free Model for Basic
Block Latency Attribution

Chengyi Lux Zhang

Abstract—Traditional performance models rely on tracking de-
tailed architectural state to predict execution behavior, requiring
sequential simulation and extensive manual calibration—an ap-
proach that scales poorly for large systems with long instruction
streams. In this work, we explore the capabilities and limitations
of state-space-free models that attribute per-instruction latencies
within a basic block using only static structural embeddings and
aggregate basic block time. Our results demonstrate that, while
state-space-free learning-based models can recover approximate
latency attributions for a subset of basic blocks with modest
complexity, they exhibit error in complex dynamic contexts with
deeper global state. We conclude with a discussion of hybrid
extensions that incorporate partial state or execution history and
provide recommendations for trace features that future hardware
should expose to support lightweight, accurate attribution.

Index Terms—Performance Modeling, Processor Tracing

I. INTRODUCTION

Understanding which instruction sequences stall and why is
critical for post-silicon software optimization. Traditional per-
formance models rely on simulators that maintain a detailed ar-
chitectural state. Although accurate, these approaches require
sequential execution and extensive parameter tuning, limiting
scalability for long instruction streams and complex multicore
interactions. Moreover, determining which state components
to model is often heuristic and ad hoc.

In this work, we investigate a complementary direction:
using state-space-free (SSF) learning-based models that infer
performance attribution directly from the static structural em-
beddings of a basic block (BB), combined with its observed
cycle count. These models allow for scalable, batch inference,
but raise fundamental questions about attribution accuracy in
the absence of dynamic context.

This paper presents a limit study of such models. Our
contributions are as follows.

o A modeling pipeline that maps basic blocks and cycle
counts to per-instruction latency estimates;

o A systematic evaluation of accuracy across diverse in-
struction sequences;

o A characterization of when state-space-free models suc-
ceed or fail at latency attribution;

o An exploratory experiment probing into the expressive-
ness of the embedding space of the model;

o A discussion of hybrid modeling strategies and trace
features to enable better profiling in future designs.

Our findings clarify the boundaries of stateless attribu-
tion models and offer guidance for designing scalable, low-
overhead profiling and tracing systems.

II. BACKGROUND
A. Processor Tracing

Modern hardware platforms often include dedicated proces-
sor tracing units that record execution events, such as retired
instructions, branch outcomes, and exceptions, in a compact
stream. Examples include Intel Processor Trace (PT) [1], ARM
Embedded Trace Macrocell (ETM) [2], and RISC-V E- [3]
and N-trace extensions [4]. These mechanisms enable post-hoc
reconstruction of continuous execution paths with extremely
low overhead, unlike intrusive binary instrumentation.

Typical trace formats intentionally exclude fine-grained tim-
ing information to save bandwidth, which precludes precise
timing analysis. To address this, we implemented TACIT
(Timestamp Annotated Core Instruction Trace), a lightweight
hardware extension that embeds delta-encoded cycle times-
tamps at each control-flow event, enabling the low-overhead
extraction of per-basic-block timing. Implementation details of
the TACIT prototype are beyond the scope of this report.

B. Performance Modeling

Cycle-accurate simulators such as gem5 [5] provide fine-
grained insights by modeling microarchitectural state at the
expense of low throughput and heavyweight calibration. Re-
cently, deep-learning-based approaches like TAO [6] use ex-
tensive feature engineering and an autoregressive transformer
to estimate latencies, providing a 1000x speedup compared to
gem5 at the expense of explanability and accuracy. Notice that
TAO keeps a latent state space that is updated per instruction
token, making its inference still sequential and stateful.

Stateless performance modeling methods are used for adja-
cent fields, like compiler cost models. Ithemal [7] provides
a coarse-grained BB throughput estimation via a stateless
hierarchical RNN. It uses Long Short-Term Memory networks
(LSTM) within a BB, so a latent space state exists. However,
each basic block is inferred individually, making it stateless
across BBs. Such granularity is sufficient for compiler heuris-
tics but not for micro-architecture evaluation.

III. IMPLEMENTATION

We implemented an SSF model prototype, FireFlower.
Figure 1 represents the high-level modeling pipeline of Fire-
Flower.

A. Canonicalization

The first step is to canonicalize an instruction trace to a
common tokenized form. Existing RISC-V disassemblers are

co: 20 [1] pc=[0000000000010004] inst=[04050513] stall=[00000000] addi a®, a®, 64 m

Canonicalization

’ START PC 00010004 INST addi RD x10 RS1 x16 IMM 64 TIMESTAMP 1 ISTALL 00000000 END m

‘ BBTIME 13 ENDBB ‘

v

Embedding

EEEnEnEEeye

v ¥ ¥ v ¥

Prediction

Fig. 1. FireFlower System Architecture

designed to be human-friendly. They extensively use pseudo-
instructions and outputs to string formats, preventing them
from being used for canonicalization. As a result, we imple-
mented rvdasm, a canonical RISC-V disassembler written in
Rust. It has three main features.

e Correctness. It is code-generated from the upstream
riscv-opcodes specification for correctness guarantee.

o Programmer-Friendly. It decodes instructions into a
cloneable struct with no pseudocode and no register name
aliases, making it easy to manipulate and canonicalize.

o Complete. It fully supports RISC-V I, M, A, C, F, D, V,
and zicsr extensions, and distinguishes XLEN of 32 bits
and 64 bits.

B. Embedding Design

FireFlower constructs a unified, learnable embedding for
each instruction by encoding its constituent features and
supplying them to a Transformer backbone. First, categorical
fields—opcodes and operands—are each mapped through
dedicated embedding tables: an opcode vocabulary and a
register file dictionary produce discrete indices, which are then
projected into dense vectors via learnable look-up matrices.
Because these fields are non-ordinal, embedding tables allow
the model to learn distinct representations without imposing
spurious numeric relationships. By contrast, immediate val-
ues, which are inherently continuous, are fed through a linear
projection layer to align with the embedding dimension. The
per-field embeddings are then concatenated and passed through
a linear fusion layer to yield a single instruction representation.

To capture instruction order, we add a positional embed-
ding to each fused vector. Additionally, we broadcast the basic
block’s total cycle count (BB time) to every instruction posi-
tion and project it into the same embedding space, enabling
the model to jointly reason about global timing context and
local instruction structure.

C. Model Backbone

We chose a four-layer Transformer encoder with eight atten-
tion heads per layer as the backbone. Self-attention is essential
because it directly considers the relationship between any two
instructions in the block, capturing long-range data and control

Instruction Level: Predicted vs Actual Latency (Log Scale)

Correlation: 0.8946

5

Predicted instruction latency

10° 10!
Actual instruction latency

Fig. 2. Evaluation Results: FireFlower per-instruction predicted vs actual
latency, both axes shown in log scale.

dependencies without requiring manual feature engineering.
Multiple attention heads allow the model to specialize. Some
focus on register producer—consumer flows, others on mem-
ory interactions, thereby modeling diverse microarchitectural
effects in parallel. Empirically, four layers provided sufficient
representational power to identify stalls without overfitting:
fewer layers are not expressive enough, while deeper stacks
takes longer to train and converge.

Finally, a lightweight linear head projects the transformer’s
output embedding to a scalar latency. We chose a regression
head because instruction latency, while measured in discrete
cycles, is fundamentally an arbitrarily large quantity. Using a
classification head would hence complicate loss design.

D. Training

Our training set comprises per-instruction retirement cycles
collected from an RTL simulation of the Rocket Core [8]
running the official RISC-V benchmark suite. The raw simula-
tion log occupies 368 MB; after canonicalizing, the processed
dataset shrinks to 156 MB. We then shuffle the examples and
split them 90 / 10 into training and validation subsets to ensure
unbiased performance evaluation. We train for 20 epochs with
a validation patience of 3 epochs.

The loss combines a weighted mean-squared error (MSE)
over valid per-instruction latency predictions with a block-level
MSE on the sum of those predictions against the true basic-
block time. Formally, letting m; be a mask indicating valid
instructions, a; the predicted latency for instruction i, a; its
ground truth, and A,.;, and Ay, being weight terms, the loss
function is:

L= Aregﬁ Z mi (i —a5) >+ Ao (Z mi&i—z mia¢)2'

IV. EVALUTATION

Overall, FireFlower ’s predictions align closely with the
true latencies. Specifically, the Pearson correlation coefficient
between the predicted and ground-truth values is 0.89, indi-
cating a strong linear relationship. An ordinary least squares
fit of predicted versus actual latencies yields a slope of 0.963
and an intercept of 0.029, showing that the model slightly
underestimates true values, but remains extremely close on
average cases. Finally, the normalized root-mean-square error
(NRMSE) is 0.00948, meaning that the standard deviation
of the prediction error is under 1% of the observed latency
range—evidence of very low relative error.

The per-instruction latency predictions versus ground truth
are plotted in Figure 2. Most points lie close to the y = x line,
indicating generally accurate estimates. However, two primary
error modes stand out. First, many instructions with a true
latency of 1 cycle are predicted above one, producing false
positives: non-stalling instructions are misclassified as stalling,
which can mislead engineers hunting performance bottlenecks
to non-existent performance bugs. Second, for true latencies
above 10 cycles, the model systematically underestimates stall
durations. These high-latency points scatter broadly along the
y-axis rather than clustering, resulting in false negatives where
genuine stalls are under-attributed. Both issues can obscure the
actual sources of system slowdowns.

The following sections will provide examples of working
and not-working predicted blocks.

A. Working Cases

TABLE I
DATA CACHE MISS CASE
Pos. Opcode Pred. (cyc) Actual (cyc) Delta
0 Iw 4.1384 4.0000 0.1384
1 c.mv 0.9990 1.0000 -0.0010
2 c.addi 0.9947 1.0000 -0.0053
3 blt 0.9969 1.0000 -0.0031

In table I, we see an example where the memory operation
is correctly attributed for the stalling the pipeline. In this case,
the 1w instruction likely triggered a L1 Data Cache miss and
caused the pipeline stall. FireFlower is capable of successfully
identifying this instruction for the stall.

TABLE II
LOAD-USE INTERLOCK CASE
Pos Opcode Pred. (cyc) Actual (cyc) Delta
0 sltu 1.0097 1.0000 0.0097
1 SW 1.0070 1.0000 0.0070
2 CSITS 1.0072 1.0000 0.0072
3 and 3.2134 3.0000 0.2134
4 c.or 1.0066 1.0000 0.0066
5 beq 1.0030 1.0000 0.0030

In table II, we see an example where the load-use interlock
is correctly attributed for the stall. An and instruction is
and x15, x15, x18, which depends on the results of

the csrrs instruction, csrrs x15, x0, CSR768, which

leads to a true write after read data dependency that could not
be resolved by the processor. There are no remainig useful
work, so the compiler did not reorder anyhow. This stall is
hence true cycles stalled due to data dependency. FireFlower
is capable of successfully identifying this pattern, likely due
to the attention mechanism, and attributing latency to the
dependent and, despite the existence of a sw that could
potentially also stall the pipeline for data cache miss.

B. Misattribution

TABLE III
MIATTRIBUTION CASE
Pos. Opcode Pred. (cyc) Actual (cyc) Delta
0 Ih 46.8364 4.0000 42.8364
1 cli 0.9803 50.0000 -49.0197
2 c.andi 1.0133 1.0000 0.0133
3 bne 2.3458 1.0000 1.3458

Despite being capable of correctly attributing some latencies
with local context, FireFlower demonstrates incompletence on
more complex blocks requireing deeper dynamic global state.
In table III, the 1h instruction is predicted to take 46+ cycles,
and bne is also attributed with a 1 cycle stall. However, in
reality, the majority of the stall comes from c. 11 instruction.
It has no dependency with previous instructions, and also is not
a memory operation. However, its PC 0x80001b80 happens
to be on the instruction cache block boundary, indicating that
this likely is an I$ miss, which further triggered an LLC miss,
leading to this long latency. An I$ miss cannot be captured by
a model without state space, as such effects are compounded
across a large trace of thousands of instruction fetch outside
of the basic block context. This demonstrates how FireFlower
will significantly mislead the users when blindly attributing
latencies without considering a deeper global state.

C. Lack of Explainability

TABLE IV
A SHORTER-LATENCY XORI BLOCK
Pos. Opcode Pred. (cyc) Actual (cyc) Delta
0 xori 2.0593 2.0000 0.0593
1 c.addiw 1.0027 1.0000 0.0027
2 and 1.0015 1.0000 0.0015
3 c.slli 1.0023 1.0000 0.0023
4 c.slli 1.0006 1.0000 0.0006
5 beq 1.0013 1.0000 0.0013
TABLE V
A LONGER-LATENCY XORI BLOCK
Pos Opcode Pred. (cyc) Actual (cyc) Delta
0 xori 5.1045 5.0000 0.1045
1 c.addiw 1.0002 1.0000 0.0002
2 and 0.9993 1.0000 -0.0007
3 c.slli 0.9991 1.0000 -0.0009
4 c.slli 0.9972 1.0000 -0.0028
5 beq 0.9973 1.0000 -0.0027

In this example, compare table IV with table V. It seems that
FireFlower does a good job on predicting xori instruction is

the source of stalling here. However, FireFlower provides no
insight in why this is the case. Why would an xor1i instruction
stall anyways? One potential explanation is the preceding BB
has a write on the source operands of xori, and the previous
block’s trailing branch got correctly speculated. Still, why
would these two xori stall for different periods? FireFlower,
as a data-driven model, although correctly attributes latencies,
fails to provide insights and potential fixes into the stalling
events.

V. CASE STUDY

To study the capability of FireFlower on the shortcomings
we demonstrate in section IV-B and section IV-C, we conduct
an exploratory study to investigate an SSF model’s ability
boundaries to predict global-state correlated events. Similar
to how Time Proportional Event Analysis [9] performs event
profiling, we modified Rocket Core to tag each instruction
with tracking information on what events in the pipeline stall
it. We specifically track for I$ misses event. This tracking
information eventually shows up in the oracle training trace.

We hence modify FireFlower to support the prediction of
I$ miss event. We add a special layer of PC embedding
as it is the most relevant feature for predicting I$ misses.
We add two additional branches of 2-layer transformers after
the original FireFlower transformer. This allows for separate
attention to focus on predicting I$ miss and the original latency
attribution task. We then attach a linear projection head to each
transformer output embedding, one as the original attribution,
and one as logits for predicting whether I$ missed or not. The
new FireFlower is essentially a multi-tasked model, but shares
some early embedding space as the tasks are correlated. We
add a BCEWithLogitsLoss loss to the total loss, and train
the new model on the same dataset.

The resulting model has no substantial difference in per-
forming the latency attribution. On the new task of predicting
I$ stalls, it produced 7 false positives, 14 false negatives, and
only 4 true positives.

TABLE VI
A MISATTRIBUTED STALL FOR FIREFLOWER +
Pos. Opcode Pred Actual Pred I$ Actual I$
0 remu 11.8060 22.0000 0.0 1.0
1 addiw 8.9859 1.0000 0.0 0.0
2 c.addidspn 7.4786 1.0000 0.0 0.0
3 cli 6.7753 1.0000 0.0 0.0
4 C.SWSp 457851 63.0000 1.0 0.0
5 bltu 4.8629 23.0000 0.0 0.0

In Table VI, the modified FireFlower yields one false
positive and one false negative. Notably, the store instruc-
tion c.swsp at PC 0x800049fc resides off any I$ block
boundary and cannot incur an I$ miss, yet the model predicts
a long latency consistent with an I$ stall and flags it as
such. This misclassification demonstrates that the learned
embedding does not internally distinguish specific microar-
chitectural events. This probing verifies that the network’s
learned embedding space relies solely on top-down, statistical
correlations of aggregated timing effects.

2 1
1$:
'D$:
Bh:’ Block0: 10

1 LLC I:{> Block1: 3 I:> 777
Haz:ard

projection reconstruction

Cj?

attribution

&

silicon

A

trace

Fig. 3. A view on the lifetime of performance analysis

VI. CONCLUSION & FUTURE WORK

Fundamentally, the shortfall identified in Section V stems
from the limited expressiveness of state-space-free (SSF)
models, which in turn reflects the information bottleneck in
timestamp-annotated traces. As illustrated in Figure 3, a wide
variety of microarchitectural events occur on silicon, and a
timed instruction trace captures only a lossy projection of their
net effect. The conciseness of trace is a fundamental limitation
due to on-chip bandwidth limitation, but it also imposes a
hard limit on what can be inferred after the fact. In signal-
processing terms, the trace is a forward (stateful) projection
of dynamic events; any stateless reconstruction algorithm—no
matter how sophisticated—cannot fully invert that projection
when the original process depends on hidden state.

We hence conclude with concrete evidence and reasoning
that a pure SSF is not an adequate heuristic for disambiguating
the performance events causing the overall stall seen, and
propose two future directions.

One approach is to adopt a hybrid design that combines
lightweight, stateless heuristics with selective stateful recon-
struction. By replaying a brief “warm-up” trace segment,
one can maybe recover an approximate architectural state
sufficiently accurate to inform downstream attribution without
incurring full sequential simulator overhead.

An alternative is to perform performance attribution on-chip,
before the lossy project occurs. Extending existing hardware
trace encoders is reasonable, as they can already observe
microarchitectural events. By embedding lightweight analysis
logic directly in silicon, the system can distill and export only
the most salient metrics, rather than raw trace streams.

However, to match peak retire rates with the core, these
algorithms must be extremely efficient, processing multiple in-
structions per cycle without added latency. Equally important,
the on-chip analysis engine must incur minimal area and power
overhead to remain practical for commercial implementation.

VII. APPENDIX
A. Technical Challenges

At the beginning of the project, I was trying to use a BERT
model - a classification model - to perform this task. However,
due to how most instructions can maintain an IPC of 1, BERT
overfits to only classify 1 instead of any other possible value.
This leads to the conclusion that a regression head and a model
built from scratch, with customized loss function, is necessary
for this to produce any meaningful result.

B. Roles

I did everything covered in this report.

C. Class Contents

This project is closely tied to the sequential analysis section
of the class. It is investigating whether a heuristic approach
exists to adequately approximate a stateful, time-stepping
algorithm that is sequential in nature, in a constrained and
specific setting.

REFERENCES

[1] Intel Corporation, 8th and 9th Generation Intel®
Core™ Processor Specification Update, Document ID
337346, Apr. 20, 2023. [Online]. Available: https:
/Iwww.intel.com/content/www/us/en/content-details/337346/
8th-and-9th- generation-intel-core-processor-specification-update.html

[2] ARM Ltd., Embedded Trace Macrocell™ Architecture Specifi-
cation (IHI0014Q), ARM Developer, 2011. [Online]. Available:
https://developer.arm.com/documentation/ihi0014/latest/ :contentRefer-
ence[oaicite:0]index=0

[3] RISC-V International, RISC-V Processor Trace Specification, Version
1.0, 2019. [Online]. Available: https://raw.githubusercontent.com/
riscv/riscv-trace-spec/master/riscv-trace-spec.pdf :contentRefer-
enceoaicite:1]index=1

[4] RISC-V International, RISC-V N-Trace (Nexus-based Trace)
Specification, Version 1.0-rc42, 2024. [Online]. Available:
https://tools.cloudbear.ru/docs/riscv-n-trace- 1.0-rc42-20240724.pdf
:contentReference[oaicite:2]index=2

[5] J. Lowe-Power et al., “The GEM5 Simulator: Version 20.0+,” arXiv
preprint arXiv:2007.03152, 2020. [Online]. Available: https://arxiv.org/
abs/2007.03152

[6] S.Pandey, A. Yazdanbakhsh, and H. Liu, “TAO: Re-Thinking DL-based
Microarchitecture Simulation,” arXiv preprint arXiv:2404.10921, 2024.
[Online]. Available: https://arxiv.org/abs/2404.10921

[7]1 C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin, “Ithemal:
Accurate, Portable and Fast Basic Block Throughput Estimation using
Deep Neural Networks,” in Proc. 36th Int. Conf. Machine Learning
(ICML), 2019. [Online]. Available: https://arxiv.org/abs/1808.07412

[8] K. Asanovié, J. Bachrach, B. Richards, J. Shan, D. Patterson, and
R. Michaud, “Rocket Chip: An Open-Source SoC Generator,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2016-17, Feb. 2016. [Online]. Available: https://www?2.eecs.berkeley.
edu/Pubs/TechRpts/2016/EECS-2016-17.pdf

[9]1 B. Gottschall, L. Eeckhout, and M. Jahre, “TEA: Time-Proportional
Event Analysis,” in Proc. 50th Int. Symp. Computer Architecture (ISCA),
Orlando, FL, Jun. 2023, pp. 13-25. doi: 10.1145/3579371.3589058.
[Online]. Available: https://doi.org/10.1145/3579371.3589058

